High-Dimensional Sparse Additive Hazards Regression

نویسندگان

  • Wei LIN
  • Jinchi LV
چکیده

High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood approach and the pseudoscore method. In a high-dimensional setting where the dimensionality can grow fast, polynomially or nonpolynomially, with the sample size,we establish theweak oracle property and oracle property undermild, interpretable conditions, thus providing strong performance guarantees for the proposed methodology. Moreover, we show that the regularity conditions required by the L1 method are substantially relaxed by a certain class of sparsity-inducing concave penalties. As a result, concave penalties such as the smoothly clipped absolute deviation, minimax concave penalty, and smooth integration of counting and absolute deviation can significantly improve on the L1 method and yield sparser models with better prediction performance. We present a coordinate descent algorithm for efficient implementation and rigorously investigate its convergence properties. The practical use and effectiveness of the proposedmethods are demonstrated by simulation studies and a real data example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LASSO Method for Additive Risk Models with High Dimensional Covariates

1 Summary. The additive risk model is a useful alternative to the proportional hazards model. It postulates that the hazard function is the sum of the baseline hazard function and the regression function of covariates. In this article, we investigate estimation in the additive risk model with right censored survival data and high dimensional covariates. A LASSO (least absolute shrinkage and sel...

متن کامل

High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study

Microarray technology results in high-dimensional and low-sample size data sets. Therefore, fitting sparse models is substantial because only a small number of influential genes can reliably be identified. A number of variable selection approaches have been proposed for high-dimensional time-to-event data based on Cox proportional hazards where censoring is present. The present study applied th...

متن کامل

Sparse Regularization for High Dimensional Additive Models

We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....

متن کامل

Oracle Inequalities and Selection Consistency for Weighted Lasso in High-dimensional Additive Hazards Model

The additive hazards model has many applications in high-throughput genomic data analysis and clinical studies. In this article, we study the weighted Lasso estimator for the additive hazards model in sparse, high-dimensional settings where the number of time-dependent covariates is much larger than the sample size. Based on compatibility, cone invertibility factors, and restricted eigenvalues ...

متن کامل

SpAM: Sparse Additive Models

We present a new class of models for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive a method for fitting the models that is effective even when the number of covariates is larger than the sample size. A statistical analysis of the properties ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013